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Peptides and proteins have been studied as potential biomaterials 1.2 —
because of the strict amino acid sequence control afforded by @ {2 A @‘;}N] ' "M2
synthetic chemical methods and their ability to fold and self- 5 u‘q__ 0'021 ,}Efg \ 5 10
assemble into well-defined three-dimensional structures, ultimately % 0.6 - 0-00 15 20
leading to nanoscale assemblies with tailor-made structures and 2 4 500 600 R 25 ——30
properties. For example, peptides have been engineered to self- <€ 0.3 -—‘__ﬁ// A 4050
assemble into nanofilaments with structures that respond to solution 0.0 ) = > 60
conditions? Chemical components capable of inducing folding by ' L D D D
tightly binding to peptides can impart novel environmental respon- 350 375 400 425 450 475
siveness and functionalities not typically seen in purely peptidic 'T:_> 60 S Wa\‘!e]ength;’mn—
materials, expanding the utility of engineered peptide assemblies. 5 40 3 b) [Cpﬂ‘_'N] [T__PP54] %] 7: |
For example, adding porphyrin, or chemically similar moieties, to ‘= 50 _;g "ﬁ ?Q“T\{ -2
a peptide assembly imparts the ability to catalyze and photosensitize ;L ~ P ::M j-'sk} :.M 3(.}U v 460 » 4:“]
chemical reactions, store oxygen, transport electrical charge, or 2 0 -
transfer molecular excitation energy? s 220

In this study, we demonstrate that an anionic porphyriase Z 40 ]
tetrakis(4-sulfonatophenyl)porphine (TR, $nduces a coiled-coil - LA LA I DL B

structure in a designed peptide, Cp3K-N, resulting in a tightly bound =) 200 210 220 230 240 250
porphyrin—peptide pair. The amino acid sequence for Cp3K-N Wavelength / nm
(Figure 1) is derived from a longer peptide sequence, Cp3K, Figure 1. (a) Series of absorbance spectra taken from solutions containing
designed to self-assemble into one-dimensional coiled-coil nano- Yarious Cp3K-N concentrations and [TRPS- 20 uM (inset: porphyrin
filaments? Cp3K-N contains three lysines spaced three residues Q-ba,? ds). (b) CD spectra from various CpsK-N/TB%IUt'OHS_(m-set'
porphyrin Soret band). The amino acid sequence of Cp3K-N is- Ac

apart from one another. Isoleucines and leucines spaced three antQQLKNQIKQLLKQ —CONH,.
four residues apart, respectively, act as determinants for dimeric
coiled-coil motifs? Solutions containing Cp3K-N and TPPi& 10
mM Tris-HCI at pH 7.6 were studied with UWis spectroscopy
(UV—vis), circular dichroism spectroscopy (CD), and analytical
ultracentrifugation (AU

Evidence for binding of the porphyrin to the peptide, resulting

in_induceda-helical con_tent in the peptide, is shown by EMS Titrimetric experiments (Figure 2) illustrate the strength and
(Figure 1a) and CD (Figure 1b) measurements, respectively. AS gygichiometry of the Cp3K-N/TPRSinteraction. Excesses of
seen in previous studies of porphyrin b|r_1d|ng to peptides and Cp3K-N or TPP$ beyond the stoichiometry of 1:1 produce no
hucleotides, ’_[he_absorb_ance of _the porphyrin soret b_and at 413 "My, iher decrease in Soret band absorbance or increase in peptide
decreases with increasing peptide concentratichUnlike many a-helical content. Given the apparent two-state behavior observed

of these studies, however, a blue-shifted peak appears at 403 My the Yy-—vis experiment (as judged by the isosbestic point), we
upon porphyrin-peptide binding rather than a red-shifted peak, and o5t the data using a simple binding model to obtain a dissociation

the porphyrin Q bands are red-shifted upon binding (Figure 1a, constant of 2.09+ 0.46 uM.8 This K4 is comparable to those

i 9-11 i i i - 1 . g . . .
insey)~ These indications of a strong Cp3K-N/TRffteraction measured for peptides specifically engineered to bind porphyrins,
are accompanlt_ad by s!gnmcant changes in the Cp3K-N CD SpeCtrathough those peptides lack the readily identifiable structural
(Figure 1b) which indicate that the largely unfolded structure of . <iion that accompanies peptide binding seen Here.

Cp3K-N in the absence of TPR® converted into am-helical Adding 0.15 M NaCl significantly reduces thehelix content
structure with increasing stoichiometric ratio of TRRS Cp3K- observed in porphyrinpeptide mixtures, suggesting that binding
N. At a 1:1 stoichiometry, the peptide is largely in a helical o5 5 gignificant electrostatic component involving interactions
conformation ¢-82%) as judged by the ellipticity of the band at between the porphyrin sulfonates and the peptide lysines (Figure
: 3). No binding is seen when a cationic porphyrin, meso-titra(
lggggmgm o gi'g)i%';”y- methyl-4-pyridyl)porphine, is use€dThe reversible electrostatic

S Current Address: Department of Chemistry, Appalachian State University, porphyrin attachment seen here, an important paradigm for self-
525 Rivers St., Boone, NC 28608. assembling systems, offers distinct advantages over irreversible

I'Current Address: Department of Chemistry, Lewis and Clark College, 0615 . o . i . . )
SW Palatine Hill Rd., Portland, OR 97219. porphyrin—peptide incorporation strategies wherein peptide chains

222 nm and the spectral shift of the higher-energy band to 208
nm212 The porphyrin Soret band (Figure 1b, inset) also shows CD,
indicating the existence of a specific porphyrin binding site on the
helical peptide involving perhaps close porphyfporphyrin
interaction.
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[Cp3K-N]/[TPPS ] Table 1. Square Roots of Variances (SQOV) Calculated by Fitting
0 1 5 4 4 AU Sedimentation Equilibrium Data to Various Solution Models

o S S SR SRR (TPPS4/Cp3K-N)

g 10 o  UV-vis -_ 20 one-state models equilibrium models
N'; o i o b o ratio SQOV (x109) ratio SQOV (x1079)

S L 11 15.0 1:+3:3 2.86

0 - 1.2 2:2 5.40 1144 3.37

< -10 4 S 33 5.35 2:2-3:3 2.79
K= —0.8% 4:4 12.9 2:2-4:4 2.83
=20 [ 04

\ﬁ . ‘j e aValue does not significantly change if a +:2:2—4:4 model is used.
Z 30 1 - 00 N N .

= 5 ability of TPPS to specifically bind and induce the assembly of a

' ' ' ; ' ; ' :‘ coiled coil offers the promise of creating responsive materials that

|

[TPPS ]/[Cp3K-N] are electronically and photonically active. Our previous work on
4 longer peptides that form one-dimensional micron-sized polymers

nm) on stoichiometric ratio from two titration experiments. In the absorbance suggests that, with the_lr_lcorpor_atlon of porphyrin derivatives, we

measurements, [TPESwas fixed at 50uM and [Cp3K-N] was varied, can form long porphyrinic-peptide arrays capable of electron or

whereas, in the CD measurements, [Cp3K-N] was fixed at AXIOand excitation energy transfée®
[TPPS] was varied. Lines have been added as a guide to the eye.

|
0

Figure 2. Dependence of absorbance (at 413 nm) and ellipticity (at 222
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